Prediction of diameter distributions in boreal forests using remotely sensed data
Räty J. (2020). Prediction of diameter distributions in boreal forests using remotely sensed data. https://doi.org/10.14214/df.294
Tiivistelmä
Metsikön puuston läpimittajakaumaa kuvataan usein teoreettisten todennäköisyysjakaumien avulla. Tyypillisesti todennäköisyysjakauman parametrit johdetaan joko ennustetuista tai arvioiduista puustotunnuksista. Kaukokartoitukseen perustuvissa metsäinventoinneissa todennäköisyysjakaumien käyttäminen ei ole kuitenkaan välttämätöntä, koska läpimittajakaumat voidaan ennustaa hyödyntämällä mitattua koeala-aineistoa (puulistat) ja epäparametrista lähimmän naapurin (NN) menetelmää. Tämän väitöstutkimuksen tavoitteena oli tarkastella NN-menetelmään ja kaukokartoitusaineistoihin perustuvaa läpimittajakaumien ennustamista boreaalisissa metsissä. Ensimmäisessä osatutkimuksessa tarkasteltiin NN-menetelmässä käytettyjä vastemuuttujakokoonpanoja, kun läpimittajakaumia ennustetaan puulajikohtaisesti. Toisessa osajulkaisussa hyödynnettiin erilaisia kaukokartoitusaineistoja tukkikokoisten puiden läpimittajakaumien ennustamisessa. Esimerkiksi monikanavaisen sekä kahdenaikaisen lentolaserkeilausaineiston käyttökelpoisuuttaa verrattiin operationaaliseen standardiin, jossa lentolaserkeilausaineistoa ja ilmakuvia hyödynnetään yhdenaikaisesti. Kolmannessa osajulkaisussa tarkasteltiin mahdollisuuksia ennustaa läpimittajakaumia yhdistäen aluepohjaista puustotulkintaa ja yksinpuintulkintaa. Tulokset osoittivat, että NN-menetelmän vastemuuttujakokoonpanolla on merkitystä puulajikohtaisten jakaumaennusteiden hyvyyteen. Tulosten perusteella voidaan todeta, että operationaalisesti käytössä oleva vastemuuttujakokoonpano ei ole optimaalisin vaihtoehto läpimittajakaumia ennustettaessa. Toisen osajulkaisun tulokset osoittivat, että puulajikohtaisten tukkitilavuusennusteiden virheet ovat suurempia, kun käytetään monikanavaista lentolaserkeilausaineistoa perinteisen yksikanavaisen lentolaserkeilausaineiston ja ilmakuvien yhdistelmän asemesta. Sen sijaan, kahdenaikaisen lentolaserkeilausaineiston (lehdettömään ja lehdelliseen aikaan kerätty) avulla tuotetut puulajikohtaiset tukkitilavuusennusteet saavuttivat lähes saman virhetason verrattuna perinteiseen lentolaserkeilausaineiston ja ilmakuvien yhdistelmään. Kolmannen osajulkaisun tulokset osoittivat, että aluepohjaisen puustotulkinnan ja yksinpuintulkinnan yhdistäminen on hyödyllistä puuston läpimittajakaumia ennustettaessa. Inventointimenetelmien yhdistelmällä saavutettiin yleisesti pienemmät virhetasot verrattuna siihen, että hyödynnettäisiin ainoastaan joko aluepohjaista puustotulkintaa tai yksinpuintulkintaa. On syytä huomata, että yksinpuintulkinnan havaittiin olevan aluepohjaista puustotulkintaa herkempi virheille metsäkuvioilla, joissa läpimittajakauma on muodoltaan kaksihuippuinen tai laskeva. Muodoltaan normaalijakaumaa muistuttaville läpimittajakaumille yksinpuintulkinta tuotti usein aluepohjaista puustotulkintaa pienemmät jakaumaennusteiden virheet. Metsärakenteen analyysia tiheäpulssisen lentolaserkeilausaineiston avulla voidaan hyödyntää indikaattorina, joka auttaa valitsemaan optimaalisen menetelmän läpimittajakaumaennusteiden tuottamiseksi.
Avainsanat
puuston läpimittajakauma;
lähimmän naapurin menetelmä;
aluepohjainen menetelmä;
lentolaserkeilaus;
monikanavainen lentolaserkeilaus;
yksinpuintulkinta
Julkaistu 11.5.2020
Katselukerrat 4803
Saatavilla https://doi.org/10.14214/df.294 | Lataa PDF
Osajulkaisut
Räty J., Packalen P., Maltamo M. (2018). Comparing nearest neighbor configurations in the prediction of species-specific diameter distributions. Annals of Forest Science 75(26): 1–16.
https://doi.org/10.1007/s13595-018-0711-0
Räty J., Packalen P., Maltamo M. (2019). Nearest neighbor imputation of logwood volumes using bi-temporal ALS, multispectral ALS and aerial images. Scandinavian Journal of Forest Research 34(6): 469–483.
https://doi.org/10.1080/02827581.2019.1589567
Räty J., Packalen P., Kotivuori E., Maltamo M. (2020). Fusing diameter distributions predicted by an area-based approach and individual-tree detection in coniferous-dominated forests. Canadian Journal of Forest Research 50(2): 113–125.