Dissertationes Forestales vol. 2014 no. 184 | 2014

Kategoria : Articles

Zhengyang Hou. (2014). Mapping of growing stock and stand delineation for tropical forests using remote sensing. https://doi.org/10.14214/df.184
Avainsanat: laserkeilaus; segmentointi; ilmakuva; ALOS AVNIR-2; aluepohjainen menetelmä; piirteiden valinta; metsän kartoitus; kuvioiden rajaus; trooppiset metsät
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä
Kaukokartoitusperusteinen trooppisen metsän puuston kartoitus ja metsiköiden rajaus Tässä työssä kehitettiin kaukokartoitusperusteisia metsävarojen inventointimenetelmiä metsätalouden kestävyyden seurantaan. Kansainvälisen ilmastopolitiikan konsepteja kehitetään metsän hävittämisestä johtuvaan kasvihuonekaasujen päästöjen hillitsemiseen (REDD), ja sen mekanismeihin kuuluu läheisesti trooppisten metsien seurantamenetelmät. Tutkimusalue sijaitsi Laosissa ja kaukokartoitusmateriaaleina oli ALOS AVNIR-2 satelliittikuva, digitaalinen ilmakuva ja laserkeilausmateriaali. Ensimmäisessä osatutkimuksessa vertailtiin näiden kolmen erityyppisen materiaalin tehokkuutta puuston tilavuuden ja tiheyden ennustamiseen. Tulokset osoittivat, että perinteinen aluepohjainen laserkeilausperusteinen menetelmä oli sekä tilavuuden (RMSE 36.9%) että puuston tiheyden (RMSE47.3%) osalta parhaat. Ilmakuvaperusteinen ennustus oli hieman parempi kuin satelliittikuvaperusteinen, vaikka erot eivät olleetkaan kovin suuria. Periaatteessa boreaalisessa metsissä kehitetty menetelmä toimi kohtuullisesti myös tropiikissa, vaikka tulokset eivät olleetkaan yhtä hyviä. Toisessa osatutkimuksessa tutkittiin aluepohjaisen menetelmän sovellettavuutta tropiikissa ja laseraineiston koealakohtaista aluskasvillisuudesta johtuvan osa-aineiston poistamista. Tutkimuksessa kehitettiin adaptiivinen pistepilven suodatusmenetelmä, jolla pystyttiin parantamaan tulosten luotettavuutta. Optimoidulla kiinteällä suodatusmenetelmällä saavutettiin 7 % tarkkuuden parannus ja adaptiivisellä menetelmällä lisäksi 2 % lisäparannus verrattuna pohjoismaiseen aluepohjaiseen perusmenetelmään. Kolmannessa osa-tutkimuksessa pyrittiin muodostamaan automaattisesti kaukokartoitusperusteisesti metsien käsittely-yksiköitä. Automaattisen kuvasegmentoinnin ja puuston ennustemallien avulla testattiin kuviointien mielekkyyttä. Ennustemallien luotettavuus ja kohdemetsän heterogeenisuus vaikuttivat merkittävästi lopputulokseen. Tutkimus osoitti, että kehitettyjä menetelmiä voidaan käyttää metsien hiilivarannon kartoitukseen ja metsien häviämisestä johtuvan kasvihuonekaasujen päästöjen seurantaan.
  • Hou, University of Eastern Finland, School of Forest Sciences Sähköposti: hou.zhengyang@gmail.com (sähköposti)

Rekisteröidy
Click this link to register to Dissertationes Forestales.
Kirjaudu sisään
Jos olet rekisteröitynyt käyttäjä, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta
Valitsemasi artikkelit