Artikkelit jotka sisältää sanan 'k lähimmän naapurin menetelmä'

Kategoria : Articles

Sirpa Thessler. (2008). Remote sensing of floristic patterns in the lowland rain forest landscape. https://doi.org/10.14214/df.59
Avainsanat: kaukokartoitus; satelliittikuvat; trooppiset sademetsät; k lähimmän naapurin menetelmä; erotteluanalyysi; lajistovaihtelu
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä
Trooppisten metsäalueiden maankäytön ja sademetsien suojelun suunnittelu tarvitsee kiireesti arvioita kasvilajiston alueellisesta vaihtelusta. Laajojen, vaikeapääsyisten ja lajirikkaiden sademetsäalueiden kasvilajiston inventointi täytyy käytännön syistä rajata koealoihin ja koskemaan vain osaa kasvilajistosta, indikaattorilajeja. Yhdistämällä lajiston inventointiaineisto ja spatiaalisesti jatkuva ympäristötieto voidaan kasvilajiston vaihtelua mallintaa ja ennustaa koealojen välisille, tutkimattomille alueille. Moniulotteinen lajiaineisto täytyy kuitenkin ensin tiivistää pienempään määrään muuttujia, lajistovaihtelun indikaattoreihin. Työssä selvitettiin voidaanko kaukokartoituksen keinoin tarkastella ja kartoittaa luonnontilaisten alankosademetsien kasvilajiston alueellista vaihtelua. Lajistovaihtelun indikaattoreina käytettiin 1) ekologisten luokiteltujen lajien lukumäärää, 2) kasvillisuus-/metsäluokkia ja 3) lajistokokoonpanoa, joka tiivistettiin NMDS ordinaation avulla kolmeen ulottuvuuteen (ordinaatioakseliin). Indikaattorilajeina käytettiin aluskasvillisuuden Melastomataceae- ja sanikkaislajeja sekä latvuskerroksen puu- ja palmulajeja. Lajistovaihtelun indikaattoreita ennustettiin tutkimattomille alueille käyttäen k lähimmän naapurin menetelmää ja lineaarista erotteluanalyysiä. Ympäristövaihtelun kuvaajina käytettiin Landsat TM ja ETM+ -satelliittikuvia ja SRTM digitaalista korkeusmallia. Tutkimusalueet sijaitsivat itäisessä Ecuadorissa, koillis-Perussa ja pohjois-Costa Ricassa. Työ osoitti että alankosademetsien kasvilajiston alueellista vaihtelua, jonka indikaattoreina käytettiin kasvillisuusluokkia, ordinaatioakseleiden arvoja tai ekologisten kategorioiden lajimäärää, voidaan arvioida ja kartoittaa yhdistämällä kaukokartoitus ja maastohavainnointi. Ennusteiden tarkkuuteen vaikuttivat etenkin kuvapiirteiden valinta ja painotus ja tarkastelun spatiaalinen resoluutio. K lähimmän naapurin menetelmä osoittautui lupaavaksi menetelmäksi lajistovaihtelun ennustamisessa, kun kyseessä oli jatkuva muuttuja kuten ordinaatioakseleiden arvot tai lajimäärä. K lähimmän naapurin menetelmä myös tuotti tarkempia ennusteita kasvillisuustyyppien luokittelussa kuin lineaarinen erotteluanalyysi.
  • Thessler, University of Turku, Faculty of Mathematics and Natural Sciences Sähköposti: sirpa.thessler@mtt.fi (sähköposti)

Rekisteröidy
Click this link to register to Dissertationes Forestales.
Kirjaudu sisään
Jos olet rekisteröitynyt käyttäjä, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta
Valitsemasi artikkelit