Artikkelit jotka sisältää sanan 'random forest'

Kategoria : Articles

Jari Vauhkonen. (2010). Estimating single-tree attributes by airborne laser scanning: methods based on computational geometry of the 3-D point data. https://doi.org/10.14214/df.104
Avainsanat: metsäinventointi; alfa-muoto; Delaunay-kolmiointi; LiDAR; lähin naapuri; random forest-menetelmä
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä
Puutunnusten estimointi ilmalaserkeilauksella: kolmiulotteisen pisteaineiston laskennalliseen geometriaan perustuvia menetelmiä Ilmasta suoritettavasta laserkeilauksesta on 2000-luvulla tullut hyvin yleinen metsäinventoinnin tietolähde. Aiempia laserkeilausaineistojen yksinpuintulkintatarkkuuksia ovat heikentäneet virheet löydettyjen puiden määrässä ja epätarkkuudet sekä puulajitulkinnassa että rungon tunnusten allometrisessa estimoinnissa. Tässä työssä tarkasteltiin puiden latvusten rekonstruointia pisteaineistojen laskennalliseen geometriaan perustuvilla menetelmillä sekä tekniikoita varsinaisten puutunnusten johtamiseksi latvusrakenteista. Erilaiset pisteaineistojen kolmiulotteisiin alfa-muotoihin (engl. alpha shape) perustuvat tilavuus-, kompleksisuus- ja pinta-alamuuttujat osoittautuivat hyödyllisiksi puulajien välisten allometristen erojen kuvaamiseen, mutta lopullisten puutunnusten tarkkuuksien kannalta alfa-muotoihin perustuviin muuttujiin kannatti yhdistää korkeus- ja intensiteettijakaumista johdettua tietoa. Lähimmän naapurin estimointimenetelmien havaittiin käyttävän selittäviä muuttujia parhaiten hyödyksi. Lisäksi ko. menetelmillä voitiin ennustaa kaikki kiinnostuksen kohteena olevat puutunnukset samanaikaisesti ja siten välttää virheiden vaikutuksia korostava estimointiketju. Erityisesti Random Forest-menetelmä kykeni sisällyttämään estimointivaiheeseen kaikki lasketut selittävät muuttujat ilman että niiden lukumäärää olisi tarvinnut erikseen vähentää. Valta- ja välilatvuskerroksessa sijainneiden puiden puulajin luokittaminen männyiksi, kuusiksi ja lehtipuiksi onnistui 78% tarkkuudella ja rinnankorkeusläpimitan, puun pituuden sekä runkotilavuuden estimaattien keskineliövirheet (RMSE) olivat 13%, 3% ja 31%, kun tulosta arvioitiin erillisessä validointiaineistossa. Vähemmän kontrolloituna puiden tulkinta ja puutunnusten estimointi tuotti metsikkötasolla tarkasteltuna epäluotettavia puustotunnusten estimaatteja. Tarkkuutta vähensivät virheet puiden rajauksessa sekä epätarkkuudet yksittäisten puiden tunnusten estimaateissa varsinkin puulajin osalta. Tarve maastoreferenssiaineistoille sekä mahdollinen laseraineiston ulkopuolisen tiedon tarve molemmat rajoittavat kehitetyn menetelmän käytettävyyttä. Toisaalta tutkimuksessa tuotettiin pelkän laseraineiston (tiheys 4 pulssia / m2) pohjalta estimaatteja latvusrajan korkeudelle 20-30% tarkkuudella RMSE:llä mitattuna. Ko. tunnus on tärkeä nimenomaan tukkikokoisten mäntyjen ulkoista laatua kuvaava tunnus. Tulosten perusteella puutason tulkinta kannattaa kohdistaa nimenomaan päälatvuskerrokseen kohdistuviin tarkkoihin mittauksiin, jolloin käytännön inventointijärjestelmässä yksinpuintulkinnalla saatavia hyötyjä tulisi tarkastella suhteessa vaihtoehtoisiin menetelmiin sekä niiden kustannuksiin.
  • Vauhkonen, Itä-Suomen yliopisto, Metsätieteiden osasto Sähköposti: jari.vauhkonen@uef.fi (sähköposti)

Rekisteröidy
Click this link to register to Dissertationes Forestales.
Kirjaudu sisään
Jos olet rekisteröitynyt käyttäjä, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta
Valitsemasi artikkelit