Työn tavoitteena oli soveltaa ja edelleen kehittää satelliittikuvatietoon perustuvia metsien inventoinnin laskennan menetelmiä ja komponentteja boreaalisen ja trooppisen metsän olosuhteissa. Tässä työssä esitettävät sovellukset perustuvat optisen alueen kaukokartoitustietoon, pääosin satelliittikuvatietoon, sekä epäparametriseen k:n lähimmän naapurin estimointimenetelmään, jotka molemmat ovat yleisesti käytettyjä komponentteja monilähteisessä metsien inventoinnissa.
Variogrammia tekstuuri-informaation lähteenä metsikkökuvion puuston keskitilavuuden estimoinnissa kokeiltiin digitaalisen ilmakuvan avulla Hyytiälässä. Ristiinvalidoinnin mukaan keskitilavuuden estimoinnin tarkkuus parani, kun semivarianssin arvot olivat mukana hakumuuttujien joukossa.
Metsäpeitteen ja tilavuuden kartoittamisessa Terain alueella Nepalissa hyödynnettiin. Landsat TM -satelliittikuvia. Monilähteisen metsien inventoinnin laskentaa sovellettiin tilavuuden kartoitukseen myös Kon Tumin provinssin alueella Vietnamissa. Näissä kahdessa tutkimuksessa käytettiin MODIS -satelliittikuvatietoa referenssinä Landsat TM kuvien suhteellisessa kalibroinnissa.
Satelliittikaukokartoitus on edesauttanut myös metsähakkeen teknisen korjuumahdollisuusarvion laskentamenetelmien kehitystyötä. Työssä esitetään esimerkkisovellus Keski-Suomessa ja lähtötietona laskentaproseduurissa käytetään monilähdeinventoinnin tuottamaa rasterimuotoista biomassakartoitusta. Metsähakkeen korjuumahdollisuusarvio perustui hakkuutähteiden ja kantojen korjuuseen päätehakkuukohteilla.
Trooppisen metsän alueita koskevissa sovelluksissa laskennan toteutus tehtiin Open Source -laskentaohjelmistoilla. Tehty työ on osaltaan myös REDD+ ohjelmaan liittyvää metsien inventoinnin ja kaukokartoituksen kapasiteetin kehitystyötä. Metsähakkeen korjuumahdollisuusarviot toimivat puolestaan tukena metsäbioenergian tuotantoon liittyvässä päätöksenteossa.
Valtakunnalliset ja alueelliset arviot metsien vaihtoehtoisista käyttömahdollisuuksista ja tulevista hakkuumahdollisuuksista perustuvat yleensä Valtakunnan metsien inventoinnin (VMI) tuottamaan koeala-aineistoon. Tarve vastaavanlaisille skenaariolaskelmille paikallisella tasolla on lisääntynyt kuten myös tarve sisällyttää laskelmiin paikkaan sidottua tietoa. VMI:n suhteellisen harvan otannan takia skenaariolaskelmia ei kuitenkaan voi tehdä pelkästään VMI-koealojen perusteella maakuntatasoa pienemmillä alueilla. Väitöskirjassa selvittiin mahdollisuutta tuottaa laskelmien lähtöaineisto VMI-koealoja, satelliittikuvia ja k:n lähimmän naapurin estimointimenetelmää käyttäen. Menetelmää hyödynnettiin ensin arvioitaessa metsien hallinnollisten ja teknisten käyttörajoitusten vaikutusta puuntuotantoon kahden kylän alueella Itä-Suomessa. Toisessa sovelluksessa arvioitiin liito-oravalle sopivien elinympäristöjen määrän kehittymistä kolmessa eri hakkuuskenaariossa metsäkeskusalueittain.
Skenaariolaskelmissa käytettiin MELA (Metsälaskelma) -ohjelmistoa. Laskentakuviot puuston kehitys- ja käsittelyvaihtoehtojen simulointia varten muodostettiin satelliittikuvien segmentoinnin ja puuntuotannon rajoitustietojen avulla. Laskentakuvioille haettiin satelliittikuvien avulla sävyarvoiltaan lähimmät VMI-koealat, joille estimoitiin uudet painot eli edustavuus kyseisellä laskentakuviolla. Työssä tarkasteltiin erilaisten segmentointimenetelmien ja sävyarvopiirteiden käyttöä estimoinnissa. Metsikkökuvioita mahdollisimman hyvin vastaavien segmenttien ansiosta liito-oravalle sopivien elinympäristöjen ennustamisessa voitiin käyttää kuvio- ja maisematason malleja.
Laskenta-aineiston tuottaminen satelliittikuviin perustuvalla koealapainojen estimoinnilla osoittautui käyttökelpoiseksi menetelmäksi, joka mahdollistaa skenaariolaskelmat pienemmillä alueilla kuin olisi mahdollista pelkän VMI-koeala-aineiston avulla, esimerkiksi kuntatasolla. Hyvän maantieteellisen kattavuuden ja jatkuvuuden ansiosta satelliittikuvat ja VMI ovat kustannustehokkaita tietolähteitä ja esitetyn menetelmän avulla VMI-aineistoa voidaan käyttää metsien käyttö- ja tuotantomahdollisuuksien arvioinnissa myös paikallistasolla.